Hossein Mehrani, Ph.D. Chemistry, 1994

Regulation of glycogen metabolism by protein phosphorylation during environmental stress



The enzymes involved in the phosphorylation controlled glycogen catabolic pathway were studied in two different model systems involving anoxia: functional anoxia in exercised fish and environmental anoxia in turtle. Glycogen phosphorylase b from rainbow trout,Oncorhynchus mykiss, white skeletal muscle was purified to near homogeneity. Glucose and ATP inhibited the enzyme; glucose inhibition decreased at lower pH values. Michaelis constants for glycogen, phosphate, and AMP were 128 micromolar, 31 millimolar, and 142 micromolar respectively, at pH 7.2; maximum enzyme activity was obtained at pH 7.5 and 25°C Exhaustive swimming exercise altered tissue glycogen phosphorylase kinase (GPK) and protein kinase A (PKA), GPK activity increasing by 60% in liver and 40% in white muscle of exercised fish. The amount of active PKA rose from 12% to 21% in liver and from 32% to 57% in white muscle after exhaustive swimming coupled with 50% and 70% increases in cellular cyclic AMP levels, respectively. Three forms of alpha-glucosidase were identified in trout liver. Two forms showed acid pH optima, hydrolyzed glycogen, maltose and 4-methylumbelliferyl alpha-glucoside (MUalphaG), and were associated with lysosomes whereas the third was microsomal, had a neutral pH optimum and did not hydrolyze glycogen. Properties of acid alpha-glucosidase type I changed significantly during exercise; maximal activity increased by 80% and Km values for glycogen and maltose dropped by 50% in exercised, versus control, fish. Exposure of turtles, Trachemys scripta elegans, to submergence anoxia at 7°C, elevated activities of phosphorolytic and glucosidic enzymes in some organs. Phosphorylase a in liver and heart increased significantly after 5 h of anoxia. PKA activity increased 2.3-fold in liver within 1 h of anoxia accompanied by a 60% increase in cAMP levels; however, with longer anoxia active PKA was suppressed to 2.1-3.7% of the total. Protein phosphatase-1 (PP-1) activity in liver decreased to 63% of controls within 1 h and remained suppressed over the subsequent 20 h of anoxia. PP-1 activity also fell in anoxic red muscle and decreased transiently in brain. Within one hour of anoxia, 40% of protein kinase C beta isomer (PKC-beta) and over 80% of PKC-alpha were translocated from cytosol to the membrane fraction. Activity of acid alpha-glucosidase also increased in liver of anoxic turtles. PKA, PP-1, PKC-alpha, and PKC-beta from control turtle liver were purified to homogeneity; physical and kinetic properties of these are presented.