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Abstract Mammalian hibernation is associated with wide important for conformational stability of the protein at near

variation in heart rate, blood Bow, and oxygen delivery to0 C body temperatures in the torpid state.

tissues and is used as a model of natural ischemia/reperfu-

sion. In non-hibernators, ischemia/reperfusion is typicallyjKeywords Oxidative stress Antioxidant defense

associated with oxidative stress but hibernators seem tischemia resistanceTorporbBarousal cycle

deal with potential oxidative damage by enhancing anti-NF-E2-related factor-2 Superoxide dismutase

oxidant defenses in an anticipatory manner. The preserieme oxygenaseARatoxin aldehyde reductase

study assesses the role of the Nrf2 transcription factor iteart

the regulation of antioxidant defenses during hibernation.

Nrf2 mRNA and protein expression were enhanced in

selected organs of 13-lined ground squirr@épermophilus Introduction

tridecemlineatusduring hibernation. Furthermore, Nrf2

protein in heart was elevated by 1.4D1.5 fold at multipldn order to survive winter, many small mammals use

stages over a torporbarousal bout including during entnhibernation. The winter hibernation season consists of long

long term torpor, and early arousal. Levels returned tgoeriods of deep torpor (lasting days to weeks) interspersed

euthermic values when squirrels were fully aroused in inby brief interbout periods (often 12D24 h) when animals

terbout. Protein levels of selected downstream target geneswarm to 37D3&. During torpor, metabolic rate is pro-

under Nrf2 control were also measured via immunoblottingfoundly depressed, frequently to only 1D5% of the normal

over the torporbarousal cycle in heart. Cu/Zn superoxideuthermic rate, and core body temperature (Tb) decreases

dismutase and aBatoxin aldehyde reductase level® near ambient (often falling to 0BG). By hibernating,

increased signibcantly during entry into torpor and thersmall mammals can often save up®™0% of the energy

gradually declined falling to control levels or below in fully that they would otherwise need to remain euthermic over

aroused animals. Heme oxygenase-1 also showed the satthe winter months J]. Transitions to and from the torpid

trend. This suggests a role for Nrf2 in regulating the anti-state are closely regulated by strong reversible controls

oxidant defenses needed for hibernation success. Heart (e.g., protein phosphorylation or dephosphorylation) on the

was amplibped by PCR and sequenced. The deduced aminates of multiple energy-expensive metabolic processes as

acid sequence showed high identity with the sequence fromell as by the enhanced expression of selected genes

other mammals but with selected unique substitutions (e.gwhose protein products address specibc needs of the animal

proline residues at positions 111 and 230) that might bén the hypometabolic, hypothermic state of torpar J].
Hibernating mammals show a strong reduction of heart

rate and blood Bow during torpor. These conditions would
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Ottawa, ON, Canada K1S 5B6 no evidence of hypoxia during torpor itself but measure-
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conditions occurred during the arousal period caused by mcreased expression of downstream gene products that are
demand for oxygen that outstripped delivery capac#ly [ under Nrf2 control such as Cu/Zn SOD and HO-1. The
Thus, the torporbarousal cycle has features of an ischemipresent study of 13-lined ground squirreBpermophilus
reperfusion cycle which is known to cause oxidative stressridecemlineatussubstantiates this hypothesis. Nrf2 gene
in other systems (e.g., human heart attack or stroke). Indeednd protein expression were elevated during torpor and this
because of this hibernating mammals are being used ascarrelated with a signibcant increase in the expression of
stroke model systenb]. Another factor that can contribute downstream antioxidant enzymes that are known targets of
to the generation of reactive oxygen species (ROS) in th&rf2.

hibernator is the altered composition of lipid reserves that is

necessary to maintain lipid RBuidity at low Tb values. For

optimal hibernation, lipid depots must contain elevatedMaterials and methods

levels of polyunsaturated fatty acids (PUFAS) such as lin-

oleic acid B] but PUFAs are very susceptible to free radical Animals

attack leading to autoxidation and the generation of lipid

peroxide radicals]. Hence, because of these factors thatThirteen-lined ground squirrels (130D180 g) were captured
increase susceptibility to ROS damage during the hiberby a licensed trapper (TLS Research, Michigan) and
nating season, mammalian hibernators must set up efpciettinsported to the Animal Hibernation Facility (NIH,
antioxidant defenses to deal with wide variations in ROSBethesda, MD). Hibernation experiments were conducted
generation over torporbarousal cycles. by the laboratory of Dr. J. M. Hallenbeck (National Insti-

Regulation of antioxidant defenses is under the controtute of Neurological Disorders and Stroke). Animals were
of specibc transcription factors that regulate gene exprekept on a fall day/night light cycle in shoebox cages
sion, one of the prominent signal transduction pathwaysnaintained at 21C and fed ad libitum until they entered
being the Nrf2/ARE pathway. The NF-E2-related factor-2and Pnished the pre-hibernation phase of hyperphagia that
(Nrf2) is a basic leucine zipper transcription factor thatmaximizes lipid stores. Tb was measured with an
binds to a cytoplasmic repressor protein, Keapl, or tdmplantable Programmable Temperature Transponder
different nuclear binding partners. When bound to KeaplPTT-200 (Bio Medic Data Systems). In order to implant
and sequestered in the cytoplasm, Nrf2 is unable to stimthe temperature transmitters, ground squirrels were anes-
ulate transcription. Nrf2 can also be directed towardghetized with 5% isof3uorane and then the transmitter was
degradation by the proteasome via its interaction withinjected subcutaneously into the middle of the back using a
Keapl B]. However, under oxidative stress conditions, sterile disposable syringd9]. When squirrels had reached
Nrf2 is released from Keapl and translocates into thea plateau weight gain of 220D240 g, they were randomly
nucleus 9] where it dimerizes with proteins such as the divided into groups for one of two protocols. Initial trials to
small Mafs, Jun and activating transcription factor-4 (ATF-characterize organ-specibc expressionnd®? compared
4) [10B12]. The complex then binds to the antioxidant two groups. Euthermic controls were maintained under the
response element (ARE) in the promoter region of genesame conditions as previously and Tb was conbrmed as
that respond to oxidative stress. Well-known Nrf2-36D38C at the time of sampling. The other group was
responsive antioxidant genes include thioredoxin and GSTglaced in a dark chamber at @ Most animals entered
[13, 14], Cu/Zn superoxide dismutase (Cu/Zn SODp], deep torpor within 3B8 days and were sampled after each
and heme oxygenase-1 (HO-116]. Furthermore, the individual had been hibernating for 2B5 days (as indicated
enzyme al3atoxin aldehyde reductase (AFAR1) is an alddby continuous Th readings ¢~6 C). Euthermic control
keto reductase that is involved in the detoxibcation ofanimals were sampled on the same days as the hibernators.
various aldehydes and ketones including the environmentall animals were anesthetized and then sacribced by
carcinogen alRatoxin §17]. A recent study has shown that decapitation. Tissues were excised, frozen immediately in
the enzyme also contains multiple AREs in its promotediquid nitrogen and then transported to Ottawa on dry ice
region [18]. where they were stored at80 C until use.

The potentially harmful oxidative stress conditions that In subsequent studies, pre-hibernation treatment was the
hibernators may experience over the course of torporBame but animals were sampled at multiple time points
arousal cycles led us to hypothesize that the Nrf2 pathwaygver the course of torpor and arousal in &4dark cold
well-known to be involved in ROS detoxibcation in room. In this protocol, all animals were transferred into the
mammals, would play a role in providing the hibernatorcold room at the start of the experimental course. The
with the necessary antioxidant defenses required to deaxperimental groups sampled were: (1) active in the cold
with hibernation-related oxidative stress. This couldroom (ACR); these euthermic squirrels had not yet entered
include an increase in Nrf2 levels during hibernation andtorpor after 3 days in the cold as determined by Thb
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readings, (2) early entrance into torpor with falling Tb with 294 ml of DEPC treated water. Ethidium bromide
(ENT) (Tb = 31P12C, >14 h in the active state after full (0.3 mg/300 ml) was added in the solution and the mixture
arousal from a torpor phase of at least 5 days), (3) early invas heated. The heated solution was then poured in a gel
the torpid state<24 h) with a stable Tb o<~5B7C (HIB-  tray and the gel was allowed to cool and solidify. A D

E), (4) later in the torpid state (at least 3 d continuousaliquot of PCR product was mixed with |4 of 6x blue/
torpor) with stable Tb of*5b7C (HIB-L), (5) early in  orange loading dye (Promega) and the solution was loaded
arousal with rising Tb (AR-E) (Th= 9D12C), and (6) on the 1% agarose gel. The gel was run in TAE buffer.

fully aroused in interbout with Th back at 32 for at least  After separation, the bands were visualized with ethidium
18 h before sampling (AR). Animals in the aroused groupsromide on a UV box. The bands from the most dilute

had been in torpor continuously for at least 3 d. cDNA sample were used for quantibcation purposes to
make sure that the products had not reached amplibcation
Total RNA isolation and quality assessment saturation. Anrf2 fragment of 717 bp was found and was

excised and sequenced by Canadian Molecular Research
Total RNA was isolated from tissue samples using TrizolServices (Ottawa, ON). The sequence was conbPrmed as
reagent (Gibco BRL), according to manufacturerOgncoding Nrf2 by sequence comparison in BLAST.
instructions, and resuspended in diethylpyrocarbonate
(DEPC) treated water. RNA concentration was determinedWestern blotting
by absorbance at 260 nm and the ratio of absorbance at
260/280 nm was used as an indicator of RNA purity. RNAFrozen tissue samples<600 mg) were homogenized in
quality was also assessed by running samples on a 1.2%ml of buffer containing 100 mM MOPS, 25 mM HEPES,
agarose denaturing gel and staining with ethidium bromid&5 mM p-glycerophosphate, 5 mM EDTA, 1 mM EGTA,

to reveal two sharp bands in every sample. and 250uM NagVO,, adjusted at pH 7.4, with 1 mM
phenylmethylsulphonyl Ruoride added immediately before
cDNA synthesis and PCR amplibcation of Nrf2 homogenization. After centrifugation at 10,@p0for

10 min at 4C, supernatants were collected and soluble
A 30 pg aliquot of total RNA from heart of hibernating protein concentrations were determined using the Coo-
squirrels was used for brst strand cDNA synthesis usingnassie blue dye-binding method and the BioRad prepared
Superscript Il reverse transcriptase (Invitrogen) and folreagent (BioRad, Hercules, CA). SDS-polyacrylamide gel
lowing the manufacturerOs protocol. Serial dilutions of the@lectrophoresis and blotting to polyvinylidene diBuoride
cDNA in water were prepared (I8010%) and were used membranes was carried out essentially as in Morin and
to amplify both Nrf2 andz-tubulin. The primers used for Storey PO} with 10% gels (5% stacking gel), 20g of
amplibcation of Nrf2 were designed using the Primerprotein loaded per well, and electrophoresis at 200 V for
Designer program, v3.0 (Scientibc and Educational Soft45 min. Wet transfer of proteins onto PVDF membranes
ware) based on the consensus sequences of mammaliaas made using a transfer buffer solution containing
Nrf2. The forward primer sequence wa8TBCCCAGGT 25 mM Tris (pH 8.5), 192 mM glycine and 10% v/v
TGCCCACAT-? and the reverse was"BATGCCRGAG methanol at 4C for 1.5 h at 0.3 mA. Following transfer,
TCAGARTC-Z As a control geney-tubulin was ampliped membranes were blocked for 1 h in TBST (50 mM TrisD
with forward (*AAGGAAGATGCTGCCAATAA-3% and HCI pH 6.8, 150 mM NaCl, 0.05% v/v Tween 20) with
reverse (8GGTCACATTTCACCATCTG-8) primers. 2.5% w/v powdered skim milk. This was decanted and then
The PCR was performed by mixing |8 of each cDNA membranes were incubated overnight a€4vith primary
dilution with 1.25ul of primer mixture (0.5uM forward  antibodies. Antibodies specibc for mammalian Nrf2 were
and 0.5uM reverse), 15ul of sterile water, 2.511 of 10x purchased from Santa Cruz Biotechnologies and used at a
PCR buffer (Invitrogen), 1.2%l of 50 mM MgCl,, 0.5 pl 1:200 v:v dilution in TBST. Antibodies specibc to Cu/Zn
of 10 mM dNTPs, and 0.12pl of TagPolymerase (Invit- SOD and HO-1 were purchased from Stressgen and used at
rogen) for a total volume of 2fl. The cycles performed for dilutions of 1:4000 and 1:2000, respectively. AFAR1
amplibcation consisted of an initial step of 2 min at@4  antibody was a gift from Dr. John D. Hayes, University of
followed by 94 C for 1 min, 54C for 1 min, and 72C for = Dundee and was used at a 1:1000 dilution. Subsequently,
1 min repeated 37 times; the bnal step was atC7/®r  membranes were incubated with HRP-linked anti-rabbit
2 min. PCR products were separated on a 1.0% agarose gidG secondary antibody (1:2000 v:v dilution) in TBST for
The gel was prepared by adding 3 g of agarose to 300 ml df h and then blots were developed using the SuperSignal
1x TAE buffer prepared by mixing 6 ml of 50 TAE  West Pico Chemiluminescent Substrate (Pierce) according
buffer (242 g Tris base, 57.1 ml concentrated acetic acidto the manufacturerOs protocol. Bands were visualized
100 ml of 0.5 M EDTA in 1 | water, adjusted to pH 8.5) using a ChemiGenius Bio Imaging System (SynGene, MD,
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USA) and band densities were quantibed using the assaecession number DQ328859. Figureshows the partial

ciated Gene Tools software. translated amino acid sequence of ground squirrel Nrf2
aligned with the sequences for the human, mouse and rat
protein. The full Nrf2 sequence has 605 residues in humans
and 597 residues in mice and rats whereas the ampliped

B . £ PCR i po_rtion of.S. tridecemlineatu5$\lrf2 encoded 239 amino
ands corresponding taf2 PCR product were normalized acids residues, corresponding t&r40% of the full

against bands foz-tubulin amplibed from the same cDNA ) o
g P sequence. Ground squirrel Nrf2 was quite similar to Nrf2

sample. Western blot band intensities were standardize

.p . . . rom other mammals and shared 87.9, 77.4, and 78.3%
against a group of three Coomassie stained protein ban(flg ntity to human. m nd rat Nif2. 1 tivel ver
that did not show variation between the different experi- entity to human, mouse and ra » [ESPECTVELY, Ove

the amplibped region. Ground squirrel Nrf2 contained a few
mental states and were not located close to the protein | . . - )
unigue amino acid substitutions that were not seen in non-

bands of interest. Signibcant differences between thﬁ_ . . o
. ibernating mammals; these are shown in bold underline in
groups were assessed using GraphPad InStat 3 software

and either the Student®sest for the euthermic versus 19" 1 These included substitutions of two prphne residues
. . : . at positions 111 and 230 as compared with the human
hibernating data or analysis of variance followed by the

DunnettOs test for the hibernation cycle data. sequence. An asparagine re5|du¢ replaced a t_yrosme rest-
due at position 226 and a tyrosine was substituted for a

histidine at position 227.

Quantibcation and statistics

Results Nrf2 gene expression

cDNA cloning of Nrf2 Levels of nrf2 mRNA transcripts were measured for three

tissues of euthermic and hibernating ground squirrels:
Using RT-PCR and primers derived from the consensusrown adipose tissue (BAT), heart and lung. Using RT-PCR
sequence ohrf2 from other mammalian species, a PCR and the primers fonrf2 and alpha-tubulin, a constitutively
product of 717 bp was retrieved from total RNA preparedexpressed gene, the relative levels of both transcripts were
from heart of hibernating ground squirrels. The productassessed in each organ. Levelsrdf2 transcripts were
was conbrmed as encoding a portion of th& sequence normalized against the tubulin transcript level in each
and the sequence was submitted to GenBank witlkample. Figureb shows the ratio of normalizedrf2

Fig. 1 Partial amino acid raman e pppaibasdind 141 AL SRR Sk kaki Sherasa Gl de ke Frad gl deet 80
. uman mmdlelpppglpsggdmdlidilwrgdidlgvsrev sqgrrkeyelekgkklekergeglgkegekaffaglgldeet

Sequence (239 reS|dUeS) Of Nrf2 mouse mmdlelpppglgsggdmdlidilwrgdidlgvsrevfdfsqgrgkdyelekgkklekergeglgkegekaffagfgldeet 80
from 13-lined ground squwrels rat mmdlelpppglgsqggdmdlidilwrgdidlgvsrevfdfsqrgkdyelekgkklekergeqglgkegekaffaglgldeet 80
(S tl’ldecemllneatl,)scompared squirrel ..., SQVAHIPKPDALYFDDCMQLLAETFPFVDDNEVSSATFQSLVPDIPSHIESPVENAPP 58
to Nrf2 sequences of human human geflpigpaghigsetsgsany-------- S——————————— O i g-—=——==- i-tn 160
(Homo sapien)s mouse Mus mouse geflpigpaghigtdtsgsasy-------- q----- e———mmm h-....... --al-----a--s--t--h 153

rat geflpigpaghigtdtsgsvsy-------- q----- e-—————————————- h-....... --—al----- v--s--tt-d 153

musculu} and rat Rattus
nOrVegiCu% Genbank aCCeSSiOn squirrel QZ—\QSPETSLDGAMA.DLNNIQQDIEQVWQELFSIPELQCLNIENDKLVETTTVPSPEAKLTEID.NEFYESIPSLEKEV 136

numbers for the four species are ~ Pumar T vaqapy--dgm-—-----—e-—l-mmmmmmmm e m-- TTTvo.myhemsm--mme--- 239

mouse ----lns--ea--t.--ss-e--m------ --t--kg-ad--a-- t---m-s-yh--s- ---= 232
DQ328859, NP_006155, rat ----lds--et--t.--ss—-—-——--m----———-————————— t--kgqga---------- t---m-s-yh--s-——-----—- 232
NP_035032 and 054968,

- . I Th f ” I h squirrel GNCSPHFLNAFEDSFSSILSTEDPNQLTVNSLNSDATLNTDFGDEFYSAFIAEPSTSNSMPSSATVSQSLSELLYG. ... 212
respETCtl.Ve Y. e A u engt human =~ —----—mmmmmo oo Vommmmmmmmm e i------ p--l-h------ n-pidv 319
protein is 605 amino acids for mouse B i L d-as--..t--d-np dgg------ e d-tieg 310
human Nrf2 and 597 amino rat
acids for mouse and rat Nrf2. squirrel
Dashed lines in the alignment human

. . mouse
represent amino acids that are rat
identical with the ground

H . squirrel
qu|_rreI sequence, spgcer dots human ssgdmvgplspsgggsthvhdagcentpekelpvspghrktpftkdkhssrleahltrdelrakalhipfpvekiinlpv 478
are inserted when residues are mouse spgdtvgplspagghsapmresgcenttkkevpvspghgkapftkdkhssrleahltrdelrakalhipfpvekiinlpv 470
not present in all sequences. rat ssgdtvgplspagghsaavhesgcenttkkevpvspghgkvpftkdkhssrleahltrdelrakalhipfpvekiinlpv 470
Selected substitutions in tHe. e 239
tridecemlineatussequence are human vdfnemmskegfneaglalirdirrrgknkvaagncrkrklenivelegdldhlkdekekllkekgendkslhllkkgls 558

H H mouse ddfnemmskegfneaqlalirdirrrgknkvaagncrkrkleniveleqgdlghlkderekllrekgendrnlhllkrrls 550
shown in bold underline rat ddfnemmskegfneaqlalirdirrrgknkvaagncrkrklenivelegdlghlkderekllrekgendrnlhllkrkls 550
SQUITTELl e e e i e e 239
human tlylevfsmlrdedgkpyspseyslggtrdgnvflvpkskkpdvkkn 605
mouse tlylevEfsmlrdedgkpyspseyslggtrdgnviflvpkskkpdtkkn 597
rat tlylevfsmlrdedgkpyspseyslggtrdgnvflvpkskkpdtkkn 597
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Fig. 2 Effect of hibernation omrf2 mRNA levels in three tissues of Fig. 3 Nrf2 protein levels in eight tissues of 13-lined ground
13-lined ground squirrelsaj Representative bands on agarose gelssquirrels. &) Representative Western blots show expression of the
show PCR product levels ampliped from ground squirrel cDNA.Nf2 pand at 57 kDa. i) Histogram shows mean relative protein
Paired tubes amplibenirf2 and a-tubulin transcripts from the same expression in tissues from hibernating versus euthermic ground
samples andnrf2 band intensities were normalized against the squirrels; animal conditions are as in Fig. 2. Data are meai8EM,
corresponding-tubulin intensity for the same sample. Band sizes y — 3 independent trials on tissue from different animals.

were 717 bp fonrf2 and 616 bp for-tubulin. BAT is brown adipose  * Hibernating values are signibcantly different from the correspond-
tissue. b) Histogram showing the ratio of normalized PCR product jng euthermic controlP < 0.05

levels in tissues from hibernating (2D5 days of continuous torpor in
the 4 C cold room with Tb readings of<6 C) versus euthermic (at
21 C with Th 36D38C) ground squirrels. Values are meahsSEM  levels at six different points over the course of the hiber-

forH'E = 3t.i”d9ple”dem tr?a'Spon ttliszlﬂfﬁf from diﬁfhre”t a“ima'sd- nation cycle: (1) euthermic squirrels that were active in the
*, Hiberna INg values are signibcantly dirrerent from the correspond- . .
ing euthermic controlP < 0.05 cold room (ACR) and had n'ot yet.entered hibernation, (2)
early entrance into torpor with falling Tb (ENT), (3) early
in the torpid state €24 h) with a stable Th at*5b7C
transcript levels in the tissues. Relative levelm@® tran-  (HIB-E), (4) later in the stable torpid state (at least 3 d)

scripts changed signibcantly only in heart, with a 1.6-foldwith Th at *5b7C (HIB-L), (5) early in arousal with

increase in transcript levels during hibernation. rising Tb (AR-E), and (6) fully aroused in interbout with
Th back at 37C (AR) (Fig. 4). Nrf2 protein in heart of
Nrf2 protein expression ground squirrels entering hibernation rose signibcantly to

levels that were 1.36-fold higher than the values in ACR
Nrf2 protein levels were measured by immunoblotting.controls P < 0.05). Amounts remained elevated through-
Western blot analysis of Nrf2 in ground squirrel tissuesout torpor and early arousal (by 1.3 to 1.5-fold compared
revealed that the content of the 57 kDa Nrf2 proteinwith ACR) but declined back to control levels in fully
increased signibcantly in BAT, heart and liver duringaroused animals.
hibernation (by 3.2-, 2.2- and 1.6-fold, respectively, In order to determine whether elevated Nrf2 during
P <0.05) (Fig.3). Interestingly, Nrf2 protein levels hibernation altered the expression of genes that are under
decreased in brain and kidney of hibernating animals to 70rf2 control in other mammals, levels of three proteins
and 60% of the euthermic values, respectivély<( 0.05). were assessed in heart over the same time course of

hibernation (Fig4). AFARL protein levels in ground
Protein levels of Nrf2 and downstream targets in squirrel heart increased signibcantly during entrance into
hibernating heart hibernation by 1.43-fold as compared with ACR animals

(P < 0.05). Levels then declined gradually back to
The above data for botimrf2 mRNA and Nrf2 protein euthermic values. Cu/Zn SOD levels also rose during
levels indicated that changes in this transcription factor arentrance into hibernation by 1.5-foldP (< 0.05) and
important in heart during hibernation. In order to furtherremained high during hibernation. Levels decreased sig-
explore Nrf2 expression in heart, we measured Nrf2 proteimibcantly when squirrels were fully aroused from torpor;
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A ACR ENT HIB-E HB-L ARE AR ground squirrels41]. Studies with black bears have also
Nrf2 highlighted increases in a marker for lipid peroxidation
e ——— during hibernation 22]. Indirect evidence that oxidative
AFAR1 — — . o
— stress occurs comes from several studies of antioxidant
CU/ZN SOD s . S G — defense mechanisms which have shown specibc elevation

during hibernation of the activities of selected antioxidant
enzymes including glutathione peroxidase in ground

HO-1 . ~ . AN o —

2.0 squirrels Citellus citellug [23], peroxiredoxin in both bats
sl B - N2 ) ] (Myotis lucifugu$ and ground squirrelsS; tridecemlinea-
: * I AFAR . .
6l * I % C—1SOD | ] tus) [24, 25], and serum catalase and superoxide dismutase-
o **7 CHo like activity in hamsters Nlesocricetus aurat)s[26, 27).
3 il I 1 | Furthermore, plasma ascorbate levels in Arctic ground
5 T : - , :
£ T i squirrels Epermophilus parryjirose by 35 fold during
T . .
§ each torpor bout and were then rapidly depleted during
2 T ] arousal, the highest rate of decrease correlating with the
§ time when oxygen consumption was maximal during
thermogenesis2B]. Microanalysis of tissue and extracel-
lular Buid in brain of hamsters also showed depletion of
ascorbate during arousal, consistent with oxidative stress in
‘ this stage of the hibernation cyclgq].
ACR ENT HIB-E HIB-L AR-E AR

Clearly, then, hibernators need well-developed antioxi-
Fig. 4 Protein expression of Nrf2, AFAR1, Cu/Zn SOD and HO-1 in dant defenses and this would predictably include increased
heart of S. tridecemlineatus (a) Representative Western blots expreSS|on Of genes Codlng for antIOXIdant enzymes' One
showing single strong cross-reacting bands at 57, 40, 19 an - L . .
32 kDa, respectively, the expected monomeric molecular masses a}’ to stimulate _th? antioxidant response is through acti
Nrf2, AFAR1, Cu/Zn SOD and HO-1 in other mammald)( Vation of transcription factors that regulate these genes.
Histogram showing relative protein expression in squirrels held in aThe present study examines the expression of the tran-

4 C cold room and sampled from different physiological conditions scription factor Nrf2. Many studies have shown the

(fully dePned in the Materials and Methods): active in the cold room. . e . .
(ACR), entrance into hibernation (ENT), early-hibernation (Hib-E), importance of this transcription factor in protecting cells

late-hibernation (Hib-L), early-arousal (Ar-E), and fully aroused @gainst oxidative stress. For example, studies using Nrf2
(AR). Data for standardized band intensities are expressed relative tonockout mice showed that expression of several detoxi-

the Corl’esponding values for ACR. Data are meﬁnSEM, n= 3b7 ] pcatlon enzymes was Strongly reduced In the knockout

independent trials on heart samples from different animals. *, Value is_, _. .
signibcantly different from the corresponding ACR valies 0.05  ouain B0l Furthermore, - hyperoxia-induced levels  of

mMRNA for antioxidant enzymes such as NAD(P)H:quinone
oxidoreductase 1 (NQO1) and HO-1 were much lower in
heart SOD levels in the AR group were just 63% of theNrf2 knockout mice than in control mice, linking Nrf2 to
ACR value P < 0.05). HO-1 protein showed an increasing the antioxidant defenses needed to deal with hyperoxia-
trend during hibernation (although not signibcant) but, likeassociated ROS productiorB]]. Hence, Nrf2 and its
SOD, HO-1 decreased signibcantly in fully aroused anidownstream enzymes could be good indicators of current
mals (AR), falling to 69% of the ACR valueP(< 0.05). or anticipated oxidative stress in hibernator tissues.
The Nrf2 transcription factor from ground squirrel heart

was partially cloned in the N-terminal region of the protein.
Discussion The ampliped fragment was 239 amino acids long and

started at position 103 as compared with the human Nrf2
The potential for oxidative stress during the differentsequence. Several amino acids substitutions were identibed
hibernation stages has been assessed previously. Mostwhen the ground squirrel partial Nrf2 sequence was com-
the work performed to date has focused on the levels and/qrared to Nrf2 sequences from non-hibernating mammals.
the activity of antioxidant enzymes and markers of anti-The ampliPed Nrf2 segment from ground squirrels con-
oxidative defense over the hibernation time course. Thigained two key domains, Neh4 (within residues 98D156)
study adds to this previous work by measuring the levels odnd Neh5 (within residues 153D227), which have both been
the Nrf2 transcription factor and of its target genes at dif-shown to act synergistically to allow Nrf2 transactivation
ferent time points over the torporbarousal cycle. Evidencéhrough CREB binding 32]. Deletion of these domains
that oxidative stress occurs during hibernation has beeleads to a severe disruption in Nrf2 transactivation activity.
produced previously from studies with intestine of 13-linedit has also been demonstrated that phosphorylation of
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residues within these domains by mitogen-activated kinasactivated under many conditions that lead to ROS gener-
family members, ERK and/or JNK, leads to a positiveation such as anoxia, hypoxia, and ischem&, [38].
regulation of Nrf2 transactivational activity3g]. Only  Control of HO-1 involves transcription factors including
minor modibcations were seen in the Neh4 and Neh®HIF-1 and Nrf2 [L6, 38]. Cu/Zn SOD is a cytoplasmic
domains of the ground squirrel protein suggesting that thenzyme that catalyzes the breakdown of harmful superox-
transactivation process is largely conserved in the hiberide into hydrogen peroxide and water. It is involved in the
nator. However, two changes of interest occurred nearegulation of ROS generation and the Cu/Zn SOD gene is
these regions; the substitutions of proline residues for aip-regulated in response to oxidative stress. Cu/Zn SOD
serine/arginine residue at position 111 and for a serinean also help to reduce cellular injury following reperfu-
residue at position 230. These modibcations, along with theion of tissues that were previously ischem&9][ Since
other substitutions that were not exclusive to the groundNrf2 was elevated over the hibernation time course, protein
squirrel, could result in a conformational change to thelevels of these downstream enzymes were also measured
hibernator Nrf2 protein that might aid its transcriptional over the same time course to see if they correlated with
activity at low body temperatures. Nrf2 levels. The data showed that Cu/Zn SOD and AFAR1
Levels ofnrf2 mRNA transcripts were measured in three protein levels increased signibcantly in parallel with ele-
ground squirrel tissues using RT-PCR. Transcript levelyvated Nrf2 levels during entry into torpor whereas HO-1
were signibcantly elevated only in heart during hibernatiorprotein levels also showed an upward trend (RBig.This
(by 1.6-fold) whereas amounts in other tissues appeared wuggests that induction of synthesis of these antioxidant
be down-regulated. Previous studies have been contradiproteins is triggered as one of the brst events when animals
tory as to whethenrf2 transcript levels rise under oxidative begin to suppress metabolic rate. This highlights the pos-
stress conditions. Whereas Cho et &1][ reported an sibility that hibernators increase antioxidant defenses as an
induction ofnrf2 transcripts by 2.0- and 2.6-fold in lungs of anticipatory or preparatory response in order to deal with
mice subjected to 48 and 72 h of hyperoxia, a study bythe oxidative stress that occurs during prolonged torpor and
Papaiahgari et al.34] had contrary results. Data gathered arousal. Such a preparation for oxidative stress by elevation
here seems to agree with the former study sindg gene  of antioxidant defenses has been proposed previously for
induction was observed. Nrf2 protein levels were thenother situations of hypometabolism/arousal such as during
measured in ground squirrel tissues by immunoblottingestivation in land snails4Q)]. It is interesting that none of
Levels were signibcantly elevated in BAT, heart and liverthe three downstream proteins remained signibcantly ele-
(3.2-, 2.2- and 1.6-fold, respectively) during hibernationvated in heart during early arousal (although Nrf2 was), a
but decreased signibcantly in ground squirrel brain andime when oxidative stress should be high due to the high
kidney. rates of oxygen-based thermogenesis needed to return to
Due to the concomitant increase of Nrf2 mRNA andeuthermic Th 28, 29]. Hence, it is possible that these
protein levels in ground squirrel heart during hibernation,particular Nrf2 regulated enzymes actually have their most
Nrf2 protein levels in this organ were assessed at multipl@rominent functional role during the torpor period itself.
time points over a hibernation cycle. Signibcantly elevatedvarious defensive mechanisms are needed to ensure met-
levels of this transcription factor were found over hetero-abolic stability and viability over the long term during
thermic portions of the time course: entry into torpor, latetorpor, since the potential to degrade oxidatively damaged
torpor, and arousing from torpor (Fig). Levels returned proteins and/or synthesize new proteins is strongly sup-
to near control values only after animals were fully pressed during torpor as part of the general suppression of
aroused. Reports have suggested that Nrf2 protein leve&STP expenditure 3]. However, given that Nrf2 levels
increase under oxidative stres¥5] 36]. Hence, the general remain elevated during early arousal, it is probable that
elevation of Nrf2 protein over the torpor portions of the additional gene targets under Nrf2 control may remain
hibernation cycle suggests that the antioxidant defenses @fevated and/or be specibcally up-regulated during the
hibernator heart may also be enhanced during this time. arousal phase. One of these may be peroxidredoxin (Prdx).
In order to assess this idea, three enzymes that havk recent report documented Nrf2 control over Prdx1 in
ARE binding sites in their promoter regions were choserresponse to hypoxia/reoxygenatiofl]. Our analysis of
for study: Cu/Zn SOD, AFAR1 and HO-1. These enzymesPrdx isozymes in 13-lined ground squirrels showed strong
all play important roles in the detoxibcation of ROS (SOD, hibernation responsive up-regulation of 3 Prdx isozymes in
HO-1) or xenobiotic carbonyl compounds (AFAR1) andheart including a 13-fold increase in Prdx1 protein over
they could all have roles in the protection against oxidativeeuthermic levelsZ5]. Nrf2 may be the transcription factor
stress in hibernators. HO-1 is an inducible enzyme that isesponsible.
involved in heme degradation and the subsequent produc- Overall, these results document an up-regulation of the
tion of biliverdin, a known antioxidant37]. The enzyme is  Nrf2 transcription factor in heart and selected other organs
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during hibernation suggesting that gene targets under Nrf23
control have important roles to play in hibernation success.

This is substantiated by parallel increases during hiberna-

tion in Cu/Zn SOD and AFARL1 protein levels, as well as

peroxiredoxins 25], all known Nrf2 gene targets. We 14.

conclude that a Nrf2-mediated up-regulation of multiple
antioxidant enzymes is a key preventative defense against
oxidative stress occurring over the torporbarousal cycle.
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