PETER HOCHACHKA ROOTS & BRANCHES

Peter's scientific excursions into how animals deal with their environment inspired other labs around the world to take up his pioneering ideas and study the details of many specific systems. His insights brought integration to a vast field of comparative and medical research.

The Dawn of Comparative Physiology

1865: Claude Bernard

"There are also experiments in which it is proper to choose certain animals which offer favorable anatomic arrangements or special susceptibility to certain influences. This is so important that the solution to a physiological or pathological problem often depends solely on the appropriate choice of the animal for the experiment so as to make the result clear and searching."

Comparative Biochemistry Unfolds

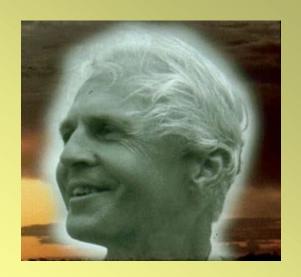
1920: A. Krogh ~ Nobel Prize

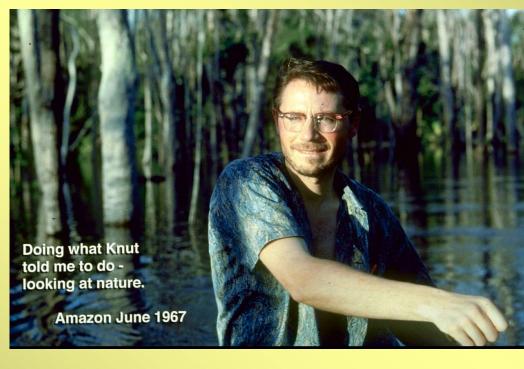
Mid-1900's ~ Viking Physiologists

P. Scholander

K. Schmidt-Nielsen

K. Johansen


A Canadian ~ F. Fry


Biochemistry ~ F. Lippman

H. Krebs

O. Warburg

Comparative Textbook ~ E. Baldwin

Comparative Biochemistry

Enzymology

Metabolic Regulation

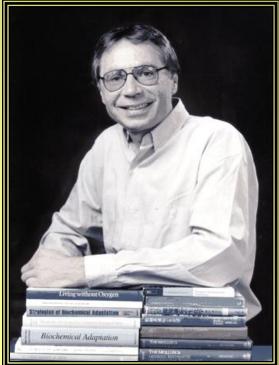
Comparative Physiology

Environmental Adaptation

Family, Alberta

B. Clayton

Mentors


Alpha Helix

Intellectual Acquisitiveness

THE WRITTEN RECORD Molecular Archeology

- 1) Publishing from 1961 2002
 - * Publishing "Arc" virtually non-existent.
 - * Started with Review Articles, Synthesis Chapters and Field-leading research contributions.
- 2) 1970 1980 114 papers 1980 - 1990 98 papers 1990 - 2000 113 papers
 - * Science, Nature, PNAS, major journals of Biochemistry, Physiology, Comparative studies, Review Series, etc.
- 3) Over 200 collaborators as co- authors
- 4) Early Work 1970-1985 dominated by graduate student work

 Later (thru 1990's) more integrative: larger groups, collaborations
- 5) THE BOOK! Strategies of Biochemical Adaptation
 - * Right Place, Right Time
 - * UNIQUE, VISIONARY (not compilation of data)
- 6) Oxygen-related studies → Central "Lake" of ideas to which Peter always returned

PWH: The Published Record

A. Fossil Hunting

- •Earliest papers (1961) O₂ debt in fish
 - CHO metabolism (aerobic) in lobsters
 - Canadian Journals (Biochemistry, Zoology)!
- •Era of temperature 1964 1970
 - fish models (many species)
 - blueprint for approach to metabolism set out
- •Temperature paradigm abandoned (1970-71)
 - Framework of approach to metabolism/adaptation kept
- •Brief Pressure Phase:
 - Helix Galapagos
 - Helix Hawaii

PWH: The Published Record

B. Era of Oxygen

- * Initial Approaches *
 - Branch points: PEP branchpoint.
 - Phospho-regulation (Oyster)
 - Decreased metabolic rate (Turtle)
 - Brain as Model (Turtle)
 - Diving (Anoxia) (Turtle, Porpoise)
- * Overall *
 - Most studies were "informed by oxygen"

C. Conceptual Parallels: 1961 – 2002

- Themes (Revisited)
- Frameworks (Expanded)
- Concepts (Elaborated Upon)

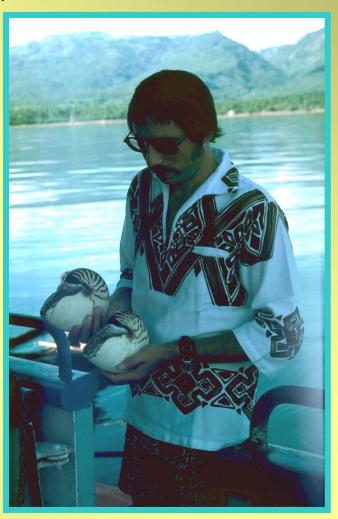
THE SHADOWY BEGINNINGS OF O₂ STUDIES

THE BRAIN TRUST:

- PWH as BRAINS
- Starts with:
 - 4 JBC Articles
 - 2 Major Reviews
 - 2 Synthesis Articles in "Science"

ROLE OF ~ Models: Turtle on desk
Oyster in cold room
Dolphin in Vancouver aquarium

Helix: Amazon 1967


Galapagos 1969 - 70

Hawaii 1973

THE HUGE EXPLOSION OF CREATIVITY & CHANGE IN EARLY - MID 70's

A TEMPERATURE LAB SUDDENLY CHANGES:

- Sudden "speciation"
 - Into Anoxia (oyster, turtle)
 - Into Pressure (cul-de-sac)
 - Into Diving (O₂ limitation)
 - Exercise (O₂ and anaerobic capacity)
 - High O₂ (squid, bees)
- Maintenance of directions *emerging from* O₂
 for rest of career:
 - Exercise (muscle metabolism, anaerobic scope)
 - Mitochondria (O₂ metabolism)
 - Diving (aerobic dives)
 - Metabolic Arrest (starts with anaerobic models)
 - High altitude (oxygen limitations)
- Expansion of areas from a single point source
 - Conceptual Drives : 1970 2002

Hypoxia: The Models

- Turtles
- Oysters
- Porpoise (dive)
- Fish:
 - Air breathing
 - exercise
 - environ. hypoxia
- Squid (NOT!)
- Bees (NOT!)

- Nautilus
- Octopus
- Seals
- Goldfish

- Highlanders
- Greyhounds
- Horses
- Lungfish
- Turtles

REVIEWS

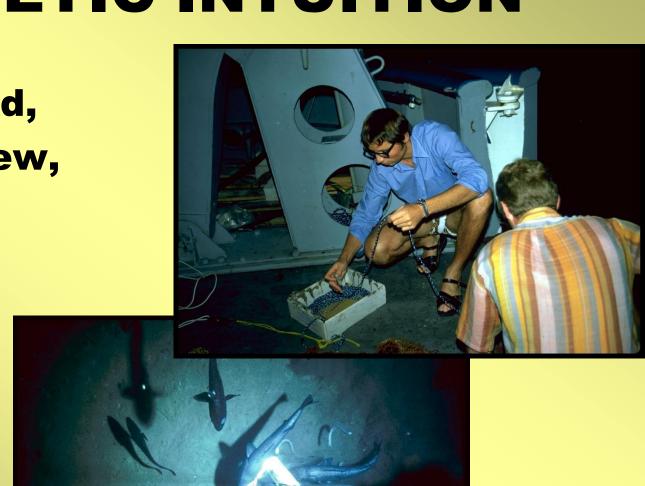
1970s: Animal Models

1980s: Metabolic Arrest

1990s: Human & Animal Model Systems

2000s: Health, Disease

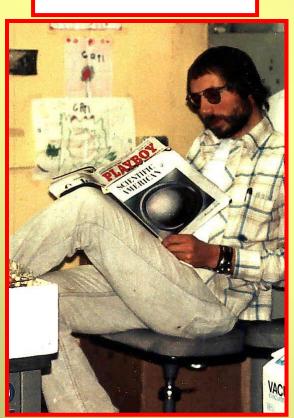
THE "WHY" OF A CREATIVE BURST


Punctuated equilibrium

- A. Synthetic Intuition* the PWH approach
- B. Constancy of Concept

SYNTHETIC INTUITION

Something Old,
Something New,
Something
Borrowed,
Some Glue.


SYNTHETIC INTUITION

IDEAS IN

- ~ Ecology
- ~ Physiol. Ecology
- ~ PHYSIOLOGY
- ~ Metabolism
- ~ Methods of Biochemistry
- ~ Molecular Biology
- ~ Genetics

FILTER

- ~ Transducer
- ~ Organizer
- ~ *Revamp*
- ~ IDEA LENS

IDEAS OUT

- ~ Metabolic Arrangement
- ~ Reorganization of Metabolism
- ~ Adaptive Change at Pathway Level
- ~ Integration: multi-levels of Biological Organization

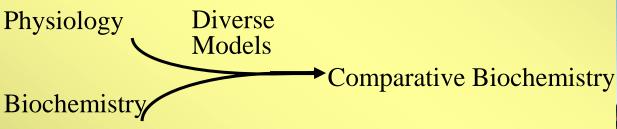
SYNTHETIC INTUITION COMPONENTS

IDEAS IN

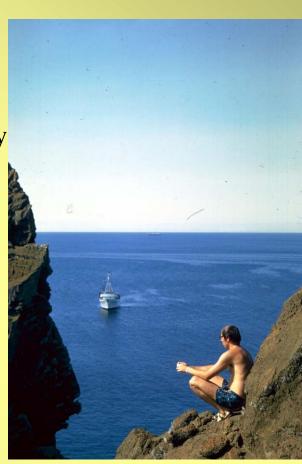
- ~ Literature search
- ~ Helix
- ~ Visits to Colleagues
- ~ UBC itself
- ~ PHONE (1970)
- ~ EMAIL (1990)
- ~ Visitors
- ~ His own lab data
- ~ Student Excitement

TRANSDUCER

COMPONENTS


- ~ IDEAS: PWH as throughput
- ~ DATA: His Work
- * PWH work as "Model"
- * PWH data "overturned"
- ~ COST-BENEFIT
 - * money (!)
 - * students
 - * collaborators
 - * teaching vs research
 - * university 'service'

OTHER


- ~ STABILITY of nonresearch life 1970 onwards!
- ~ Excellent writing skills
- ~ NSERC-type \$\$
 - *Biggest fish in Canada
 - * THE BOOK!
 - ~ Never "Circle the Wagons".

SYNTHETIC INTUITION

1) A new mix of ideas leads to a new field:

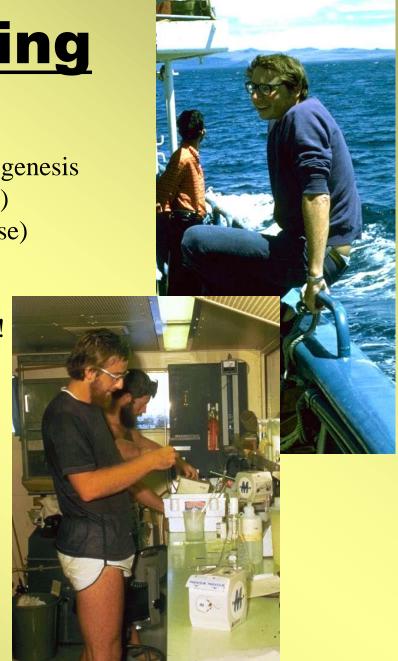
- 2) Any new set of data reorganizes itself through Peter and returns as UNIQUE
- 3) Salvage Solutions from Chaos: Hawaii: fish (NOT), Amazon, Thesis Ideas, *DATA KNOTS*
- 4) Time Vampire: "Students Match Projects"
- 5) Ideas versus GOOD Ideas
- 6) Sink-or-Swim

Student Wrangling

I got PhD with 7th project I started

Topics a) Temperature and tuna (!)

b) Crabs and molting - *gluconeogenesis

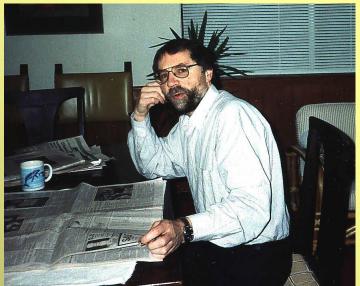

c) α-KGDH (regulate TCA cycle)

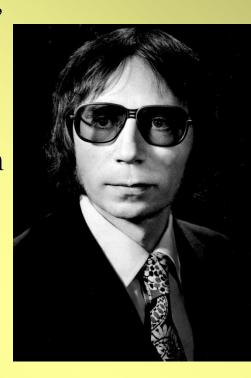
d) DIVING: TURTLES (Porpoise)

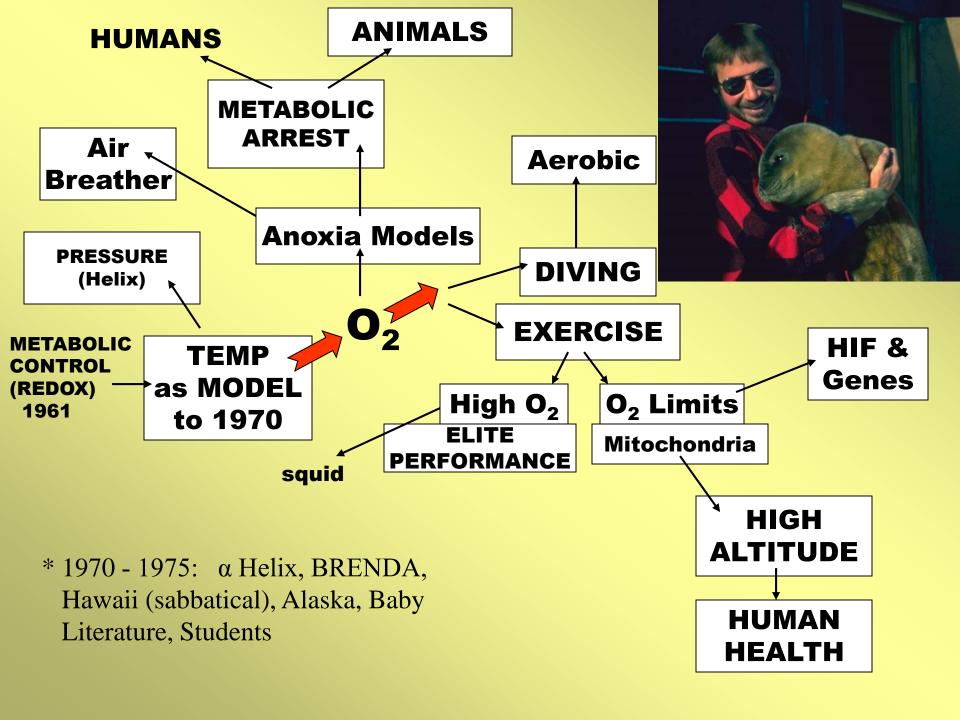
He let me SINK / SWIM

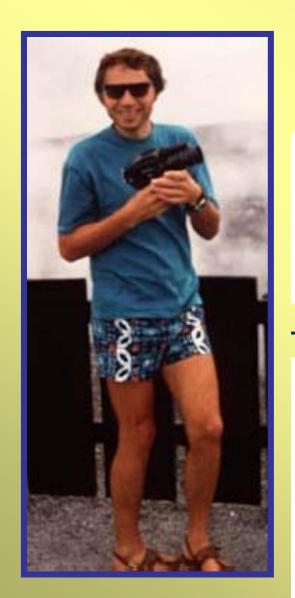
Thesis as 'minor' portion of SCIENCE done!

- Idea for final PhD: WRONG! Yet brilliant.
- I suggest crazy things: He said YES !!!!!!
- ~ bees, oyster, squid, porpoise
- Integration: "Optimize" student function.
 - ~ diving review article
 - ~ Helix trip although junior
 - ~ Students work for THEMSELVES




The Creative Burst: B


Progression and Constancy

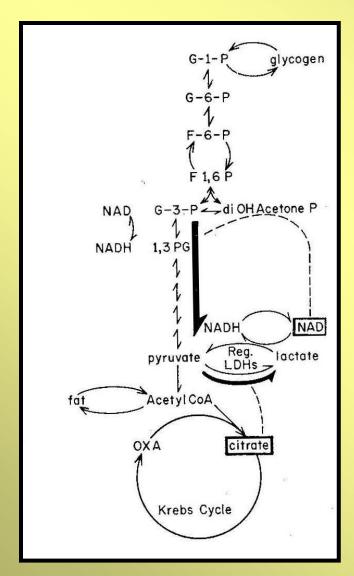


- Concepts, Approaches, Directions,
 Technologies -- all progressed
 1960 → 2002
- •There was a constancy of the "intellectual lens" through which Peter saw science

MOLECULAR MECHANISMS OF

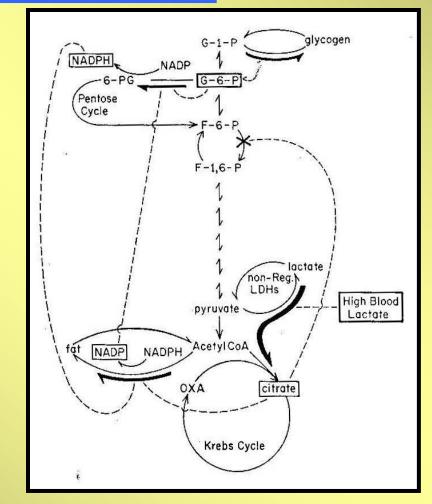
TEMPERATURE ADAPTATION

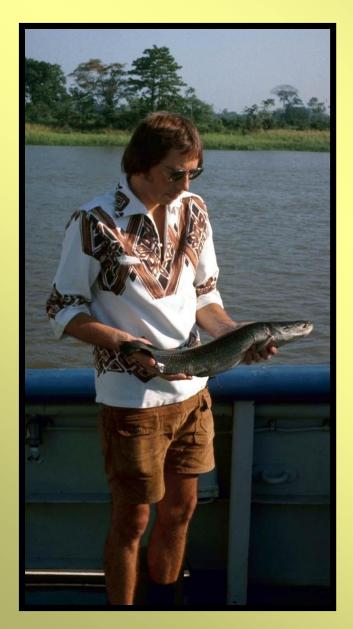
A symposium presented at the Berkeley meeting of the American Association for the Advancement of Science 27–29 December 1965

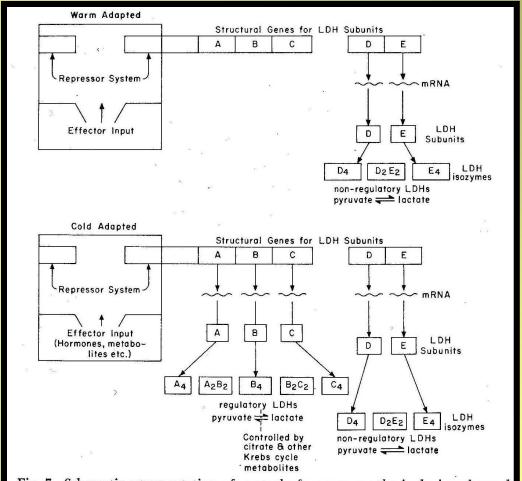

Edited by

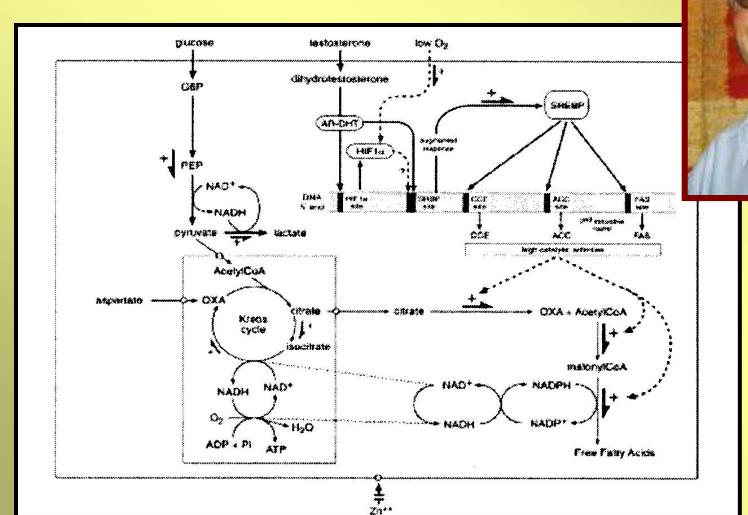
C. LADD PROSSER

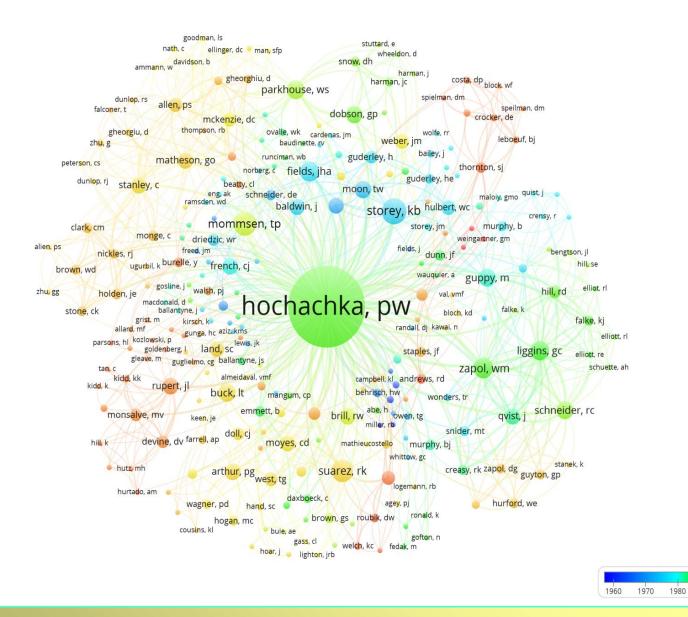
Organization of Metabolism during Temperature Compensation


PETER W. HOCHACHKA


Often it has been stated that a living organism is, in large measure, a kind of bag filled with a concentrated mixture of many hundreds of different enzymes, and that each enzyme is a highly effective cata-




Fig. 7. Schematic representation of control of enzyme synthesis during thermal compensation. The repressor system on the left can be considered as a black box that regulates only one set of structural genes specifying LDH subunits. The control of another set (shown as the D-E system) is independent of the state of thermal compensation. The inducible LDH subunits assemble into LDHs that are regulatory. Not all of the isozymes formed are indicated in the diagram.


Going malignant: the hypoxia-cancer

connection in the prostate

P.W. Hochachka, J.L. Rupert, L. Goldenberg, M. Gleave, and P. Kozlowski

BioEssays 24: 749-757, 2002.

1990

2000

2010

VOSviewer

PETER HOCHACHKA AND OXYGEN

by K.B. Storey. 2003. In *Hypoxia: Through the Lifecycle*. Adv. Exp. Med. Biol. 543: 331-337. "The Hypoxia Society"

ADVENTURES IN OXYGEN METABOLISM

by K.B. Storey. 2004. *Comp. Biochem. Physiol. B* 139, 359–369

The Scientist is not a person who gives the right answer,

He's the one who asks the right Question.

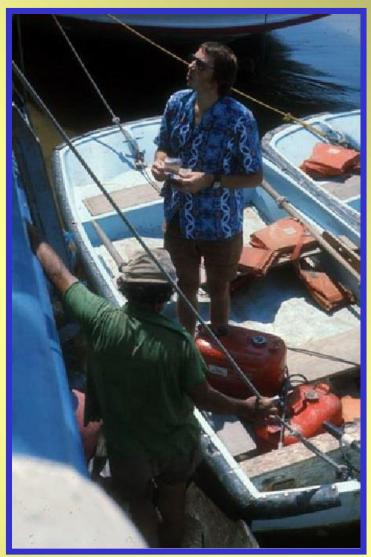
-- C. Levi-Strausse

A Science is any discipline in which the fool of this generation can go beyond the point reached by the genius of the last generation.

-- Max Gluckman

WIT & WISDOM OF

Supervisors say the darndest things


Peter's Favorite Student

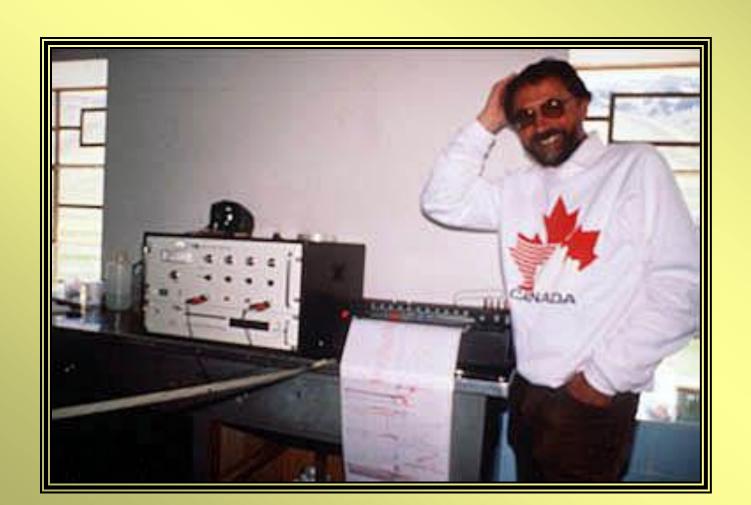
Source of many "personal communications"?

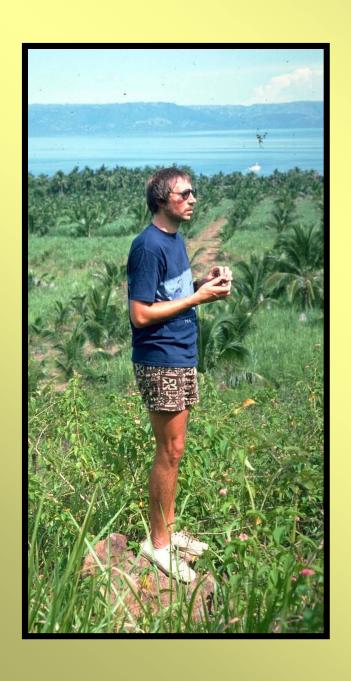
- "If you teach poorly enough for long enough, they stop asking"
 - ~ Advice to me as I headed off to Duke

PWH: Finances

"My lab is full"

>> Said to KBS when asked about taking Ken into his lab.


---15 minutes of discussion later --


"Take that desk"

>> Said to KBS when Peter discovered that Ken had a scholarship that paid both salary and research expenses.

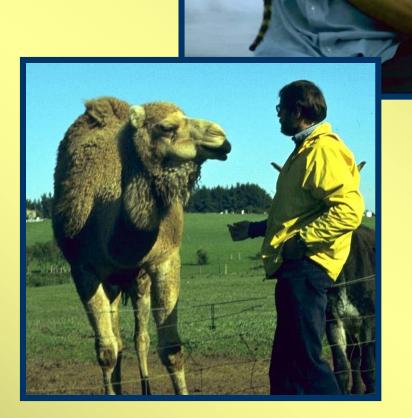
"Very Interesting, very interesting"

--Peter, dismissing an idea

"Unless you are the PACKLEADER the view never changes"

--Referring to non-<u>lead</u> dogs in a dog sled team.

"They were the longest (two) years of my life"


-- Referring to the two years of Ken: 1972 - 1974

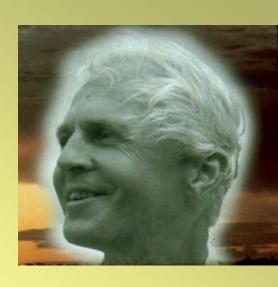
Favourite Phrases

- Reptilian scales fell from my eyes
- Knuckle-draggers
- Like water off a duck's back

A Life of Science Adventure

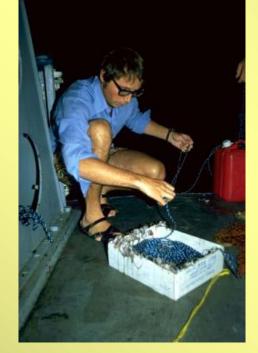
Mentors

Peter Hochachka

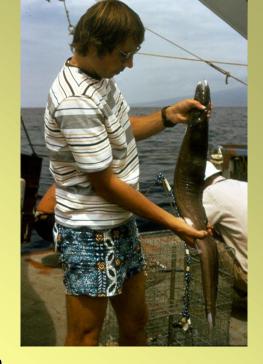


Dave Jones

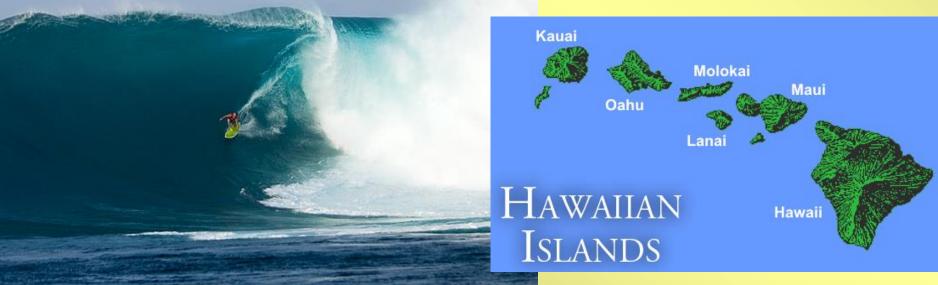
Knut Schmidt-Neilsen, Ladd Prosser, Kjell Johansen, UBC giants [ex. Bill Hoar], Fred Fry, Hans Krebs, A. Helix, Earl Stadtman, DUKE [Zoology], JM Teal, M Telfored


DO YOUR WORK, THEN STEP BACK. THE ONLY PATH TO SERENITY.

- "Tao Te Ching" by Lao Tzu



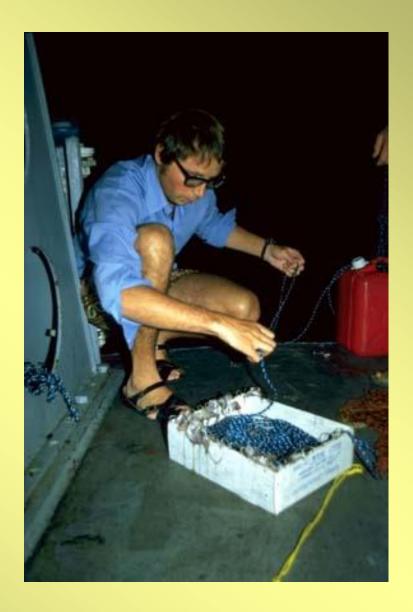
Hawaii – Kona Expedition 1973



Hawaii – an Alpha Helix tale

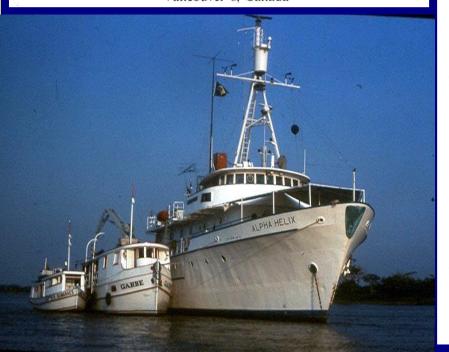
- Kona Coast
- 25 foot waves between islands
- Follow-Up trip to consolidate "wins"

Hawaii



Hawaii

Biochemistry at Depth


PRESSURE EFFECTS ON BIOCHEMICAL SYSTEMS OF ABYSSAL AND MIDWATER ORGANISMS: THE 1973 KONA EXPEDITION OF THE ALPHA HELIX

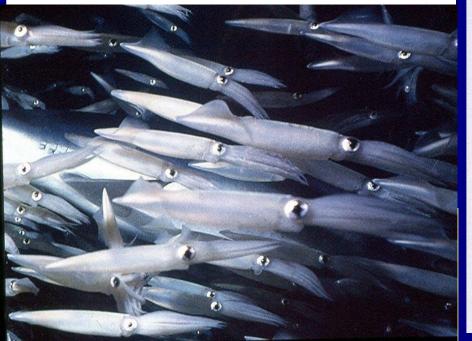
Edited and Organized

by

Р. W. Носнаснка

Department of Zoology, University of British Columbia, Vancouver 8, Canada

Comp. Biochem. Physiol. B 52(1), 1975

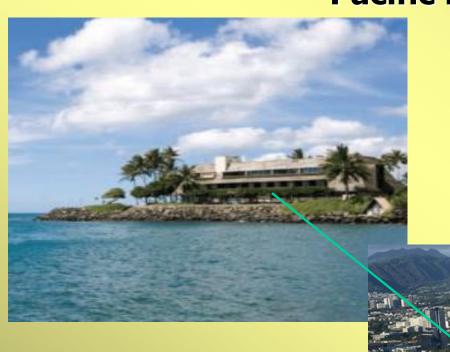

CONTENTS

P. W. HOCHACHKA: Why study proteins of abyssal organisms?	
Walter Garey: The Alpha Helix Kona Expedition	
Томю Iwamoto: The abyssal fish Antimora rostrata (Günther)	
P. W. Hochachka, K. B. Storey and J. Baldwin: Design of acetylcholinesterase for its physical environment J. Baldwin, K. B. Storey and P. W. Hochachka: Lactate dehydrogenase M ₄ of an abyssal fish: strategies	1
for function at low temperature and high pressure P. W. HOCHACHKA: Fitness of enzyme binding sites for their physical environment: coenzyme and substrate	1
binding sites of M ₄ lactate dehydrogenases J. BALDWIN: Selection for catalytic efficiency of lactate dehydrogenase M ₄ : correlation with body temperature	2
and levels of anaerobic glycolysis	3
P. W. HOCHACHKA: How abyssal organisms maintain enzymes of the "right" size	3
P. W. HOCHACHKA, K. B. STOREY and J. BALDWIN: Gill citrate synthase from abyssal fish	4
THOMAS W. MOON and KENNETH B. STOREY: The effects of temperature and hydrostatic pressure on enzymes of an abyssal fish, <i>Antimora rostrata</i> : liver NADP-linked isocitrate dehydrogenase THOMAS W. MOON: Effects of hydrostatic pressure on gill Na-K-ATP in an abyssal and a surfacing-dwelling	5
teleost	5
FILLIP S. Low and George N. Somero: Pressure effects on enzyme structure and function in vitro and under simulated in vivo conditions	6
ROBERT W. NOBLE, RUSSELL R. PENNELLY and AUSTEN RIGGS: Studies of the functional properties of the hemoglo-	0
bin from the benthic fish, Antimora rostrata	7.
RUSSELL R. PENNELLY, ROBERT W. NOBLE and Austen Riggs: Equilibria and ligand binding kinetics of hemoglo-	1.
bins from the sharks, Prionace glauca and Carcharhinus milberti	8
B. J. RIGBY and C. L. PROSSER: Thermal transitions of collagen from fish recovered from different depths	8
R. V. Josephson, R. B. Holz, J. P. Misock and C. F. Phleger: Composition and partial protein characterization	
of swimbladder foam from deep-sea fish, Coryphaenoides acrolepis and Antimora rostrata	9
CHARLES F. PHLEGER: Lipid synthesis by Antimora rostrata, an abyssal codling from the Kona coast	9
CHARLES F. PHLEGER: Bone lipids of Kona coast reef fish: skull buoyancy in the hawkfish, Cirrhites pinnulatus	10
JOHN S. PATTON: The effect of pressure and temperature on phospholipid and triglyceride fatty acids of fish	
white muscle: a comparison of deepwater and surface marine species	10:
JOHN S. PATTON and A. A. BENSON: A comparative study of wax ester digestion in fish	11
WILLIAM C. HULBERT and THOMAS W. MOON: Tissue ultrastructure and alterations as a result of applied hydrostatic pressure in two marine teleosts	1.11
C. L. Prosser, William Weems and Richard Meiss: Physiological state, contractile properties of heart and	11
lateral muscles of fishes from different depths	12
ROBERT B. CAMPENOT: The effects of high hydrostatic pressure on transmission at the crustacean neuromuscular iunction	133
RICHARD EDWARD YOUNG: A brief review of the biology of the oceanic squid, Symplectoteuthis oualaniensis (Lesson)	
THOMAS W. MOON and WILLIAM C. HULBERT: The ultrastructure of the mantle musculature of the squid, Symplec-	14:
toteuthis oualaniensis	14:
P. W. HOCHACHKA, T. W. MOON, T. MUSTAFA and K. B. STOREY: Metabolic sources of power for mantle muscle	14.
of a fast swimming squid	15
K. B. STOREY and P. W. HOCHACHKA: Redox regulation of muscle phosphofructokinase in a fast swimming squid	15
K. B. STOREY, J. BALDWIN and P. W. HOCHACHKA: Squid muscle fructose diphosphatase and its role in the control of F6P-FDP cycling	16
K. B. STOREY and P. W. HOCHACHKA: Alpha-glycerophosphate dehydrogenase: its role in the control of the	
cytoplasmic arm of the alpha-glycerophosphate cycle in squid mantle	16
K. B. Storey and P. W. Hochachka: The kinetic requirements of cytoplasmic alpha-glycerophosphate (α-GP)	
dehydrogenase in muscles with active α-GP cycles	17:
K. B. STOREY and P. W. HOCHACHKA: Squid muscle glyceraldehyde-3-phosphate dehydrogenase: control of the	17
enzyme in a tissue with an active α-glycero-P cycle K. B. Storey, T. Mustafa and P. W. Hochachka: Squid muscle malic enzyme	179
K. B. STOREY and P. W. HOCHACHKA: Squid muscle pyruvate kinase: control properties in a tissue with an	10.
active x-GP cycle	18
P. W. HOCHACHKA, K. B. STOREY and J. BALDWIN: Squid muscle citrate synthase: control of carbon entry	- 0
into the Krebs cycle	19

And if you don't find fish.....

Biochemistry at Depth

PRESSURE EFFECTS ON BIOCHEMICAL SYSTEMS OF ABYSSAL AND MIDWATER ORGANISMS:
THE 1973 KONA EXPEDITION OF THE
ALPHA HELIX

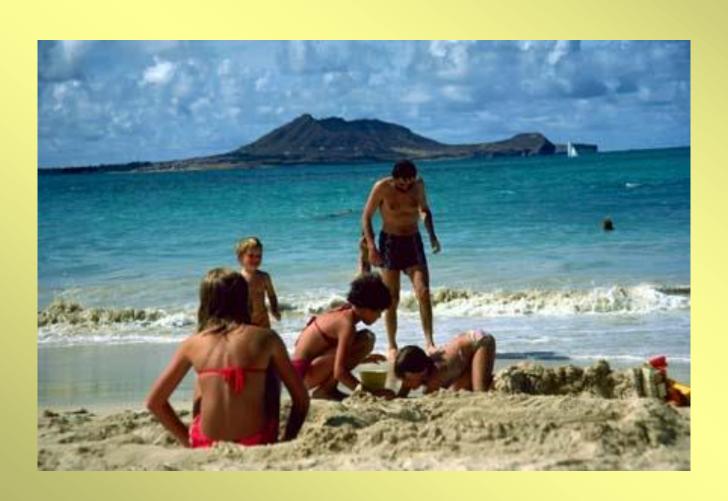

Comp. Biochem. Physiol. B 52(1), 1975

P. W. HOCHACHKA: Why study proteins of abyssal organisms?

CONTENTS

Walter Garey: The Alpha Helix Kona Expedition	3
TOMIO IWAMOTO: The abyssal fish Antimora rostrata (Günther)	7
P. W. HOCHACHKA, K. B. STOREY and J. BALDWIN: Design of acetylcholinesterase for its physical environment	13
J. BALDWIN, K. B. STOREY and P. W. HOCHACHKA: Lactate dehydrogenase M ₄ of an abyssal fish: strategies	
for function at low temperature and high pressure	19
P. W. HOCHACHKA: Fitness of enzyme binding sites for their physical environment: coenzyme and substrate	
binding sites of M ₄ lactate dehydrogenases	25
J. BALDWIN: Selection for catalytic efficiency of lactate dehydrogenase M4: correlation with body temperature	
and levels of anaerobic glycolysis	33
P. W. HOCHACHKA: How abyssal organisms maintain enzymes of the "right" size	39
P. W. HOCHACHKA, K. B. STOREY and J. BALDWIN: Gill citrate synthase from abyssal fish	43
THOMAS W. MOON and KENNETH B. STOREY: The effects of temperature and hydrostatic pressure on enzymes	
of an abyssal fish, Antimora rostrata: liver NADP-linked isocitrate dehydrogenase	51
THOMAS W. MOON: Effects of hydrostatic pressure on gill Na-K-ATP in an abyssal and a surfacing-dwelling	
teleost	59
PHILIP S. Low and GEORGE N. SOMERO: Pressure effects on enzyme structure and function in vitro and under	45
simulated in vivo conditions	67
ROBERT W. NOBLE, RUSSELL R. PENNELLY and AUSTEN RIGGS: Studies of the functional properties of the hemoglo-	0,
bin from the benthic fish, Antimora rostrata	75
RUSSELL R. PENNELLY, ROBERT W. NOBLE and AUSTEN RIGGS: Equilibria and ligand binding kinetics of hemoglo-	13
bins from the sharks, Prionace glauca and Carcharhinus milberti	83
B. J. RIGBY and C. L. PROSSER: Thermal transitions of collagen from fish recovered from different depths	89
R. V. Josephson, R. B. Holz, J. P. Misock and C. F. Phleger: Composition and partial protein characterization	03
of swimbladder foam from deep-sea fish, Coryphaenoides acrolepis and Antimora rostrata	91
CHARLES F. PHLEGER: Lipid synthesis by Antimora rostrata, an abyssal codling from the Kona coast	97
CHARLES F. PHLEGER: Bone lipids of Kona coast reef fish: skull buoyancy in the hawkfish, Cirrhites pinnulatus	101
JOHN S. PATTON: The effect of pressure and temperature on phospholipid and triglyceride fatty acids of fish	101
white muscle: a comparison of deepwater and surface marine species	105
JOHN S. PATTON and A. A. BENSON: A comparative study of wax ester digestion in fish	111
WILLIAM C. HULBERT and THOMAS W. MOON: Tissue ultrastructure and alterations as a result of applied hydro-	111
static pressure in two marine teleosts	117
C. L. PROSSER, WILLIAM WEEMS and RICHARD MEISS: Physiological state, contractile properties of heart and	117
lateral muscles of fishes from different depths	127
ROBERT B. CAMPENOT: The effects of high hydrostatic pressure on transmission at the crustacean neuromuscular	127
junction	133
RICHARD EDWARD YOUNG: A brief review of the biology of the oceanic squid, Symplectoteuthis oualaniensis	1.7.5
(Lesson)	141
THOMAS W. MOON and WILLIAM C. HULBERT: The ultrastructure of the mantle musculature of the squid, Symplec-	
toteuthis oualaniensis	145
P. W. HOCHACHKA, T. W. MOON, T. MUSTAFA and K. B. STOREY: Metabolic sources of power for mantle muscle	143
of a fast swimming squid	151
K. B. STOREY and P. W. HOCHACHKA: Redox regulation of muscle phosphofructokinase in a fast swimming	151
squid	159
K. B. STOREY, J. BALDWIN and P. W. HOCHACHKA: Squid muscle fructose diphosphatase and its role in the	137
control of F6P-FDP cycling	165
K. B. STOREY and P. W. HOCHACHKA: Alpha-glycerophosphate dehydrogenase: its role in the control of the	105
cytoplasmic arm of the alpha-glycerophosphate cycle in squid mantle	169
K. B. Storey and P. W. Hochachka: The kinetic requirements of cytoplasmic alpha-glycerophosphate (α-GP)	
dehydrogenase in muscles with active α-GP cycles	175
K. B. STOREY and P. W. HOCHACHKA: Squid muscle glyceraldehyde-3-phosphate dehydrogenase: control of the	
enzyme in a tissue with an active α-glycero-P cycle	179
K. B. STOREY, T. MUSTAFA and P. W. HOCHACHKA: Squid muscle malic enzyme	183
K. B. STOREY and P. W. HOCHACHKA: Squid muscle pyruvate kinase: control properties in a tissue with an	
active α -GP cycle	187
P. W. HOCHACHKA, K. B. STOREY and J. BALDWIN: Squid muscle citrate synthase: control of carbon entry	
into the Krebs cycle	193

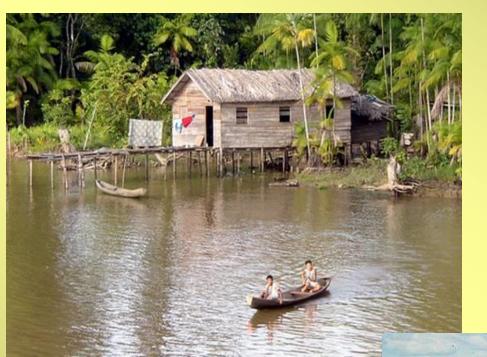
Honolulu, 1975 Kewalo Marine Lab Pacific Biosciences Research Center



Balancing

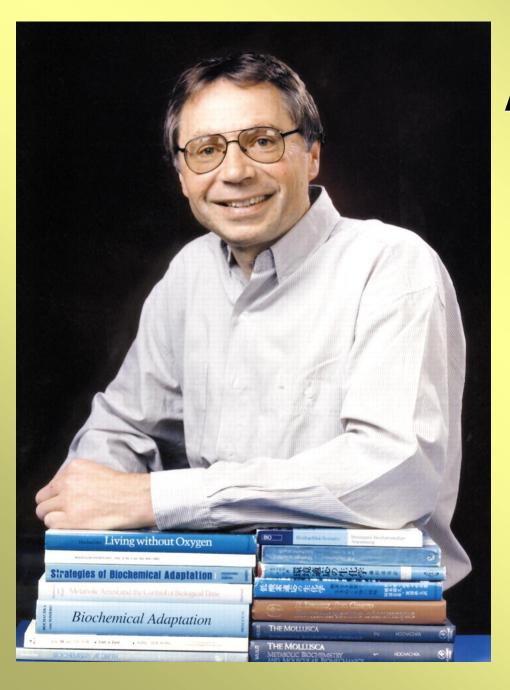
- Time away limited
- Family focus

Up the Amazon – Paddles did NOT help


The Helix: Crucible

- Rescued from the river
- Small boys & Fish
- Science in context
- Amazon connection
- Nature's richness
- Peter's projects have legs

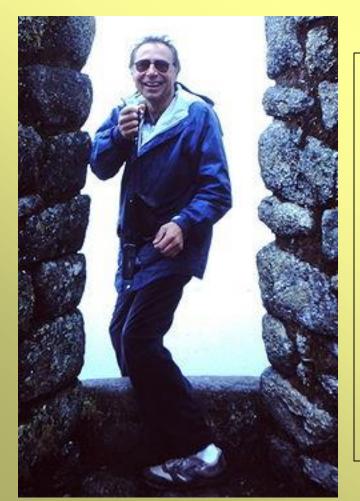
- Soccer with the kids
- Floating houses & pet pigs
- 24/7 research. Intense
- Longest day: 28 h → from animal to purified enzyme (1 band on SDS-PAGE)


No caimen were harmed


- Electric eel delivered
- Babysitting the pirarucu
- Escape of the walking catfish

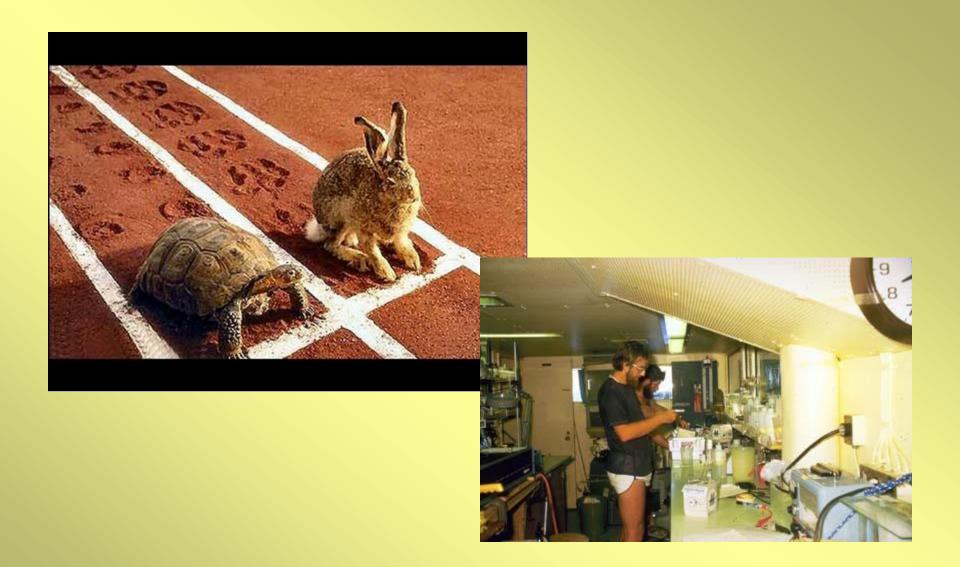
"Reptilian scales fell from my eyes" PWH

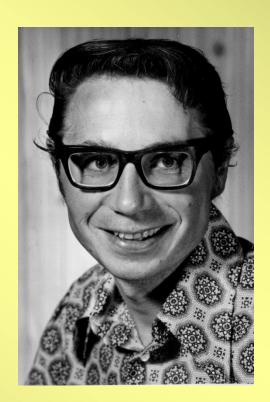
Several hundred pictures of the black vs white water taken!

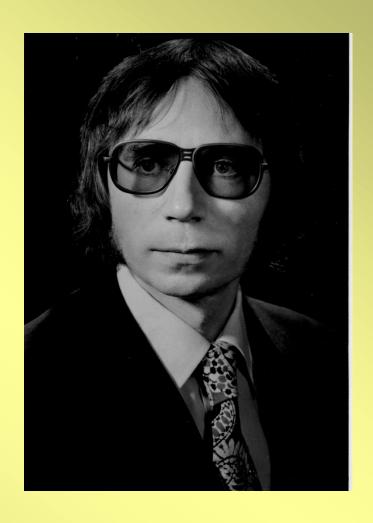


Academic Accomplishment = job offers

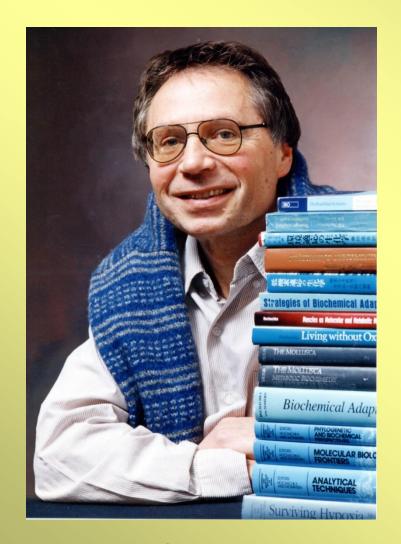
Two that I know of: U Victoria U Alberta

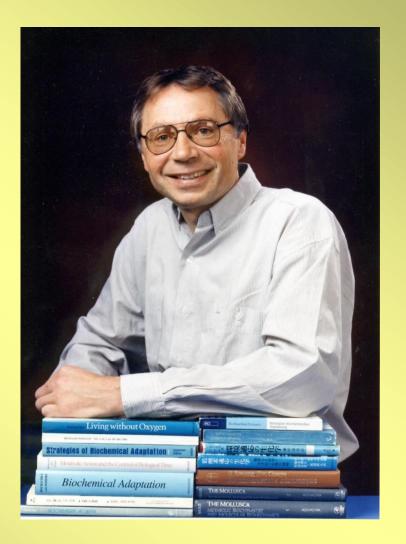

The lead dog Philosophical

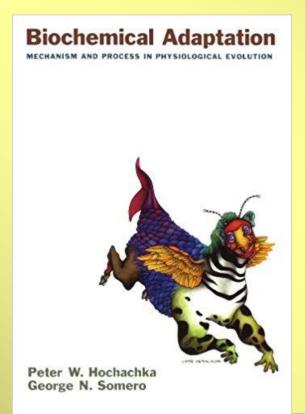

- * If I have to hold their hands now, how will they become independent scientists
- * "Fas-SKIN-nating"
- * UBC visitors Nobels [Skou] & others
- * Field Trip Great Co-Scientists
- You inherit his friends. You inherit his enemies
- * My first external PhD external examiner wanted to fail my thesis. He 'went away'.

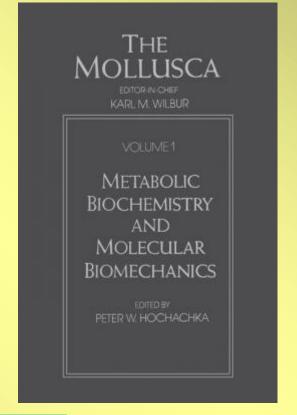

Ken, the tortoise, suddenly realizes that it is *NOT* going to turn out like in the fable

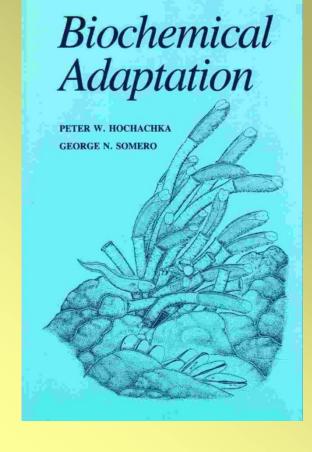
Peter: Prankster

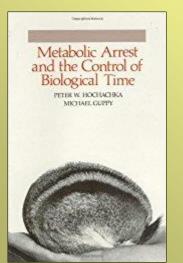

- Woods Hole: GDH
- Eating the deep sea shrimp
- The lava, the data & the pancakes

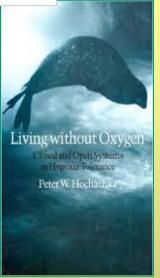


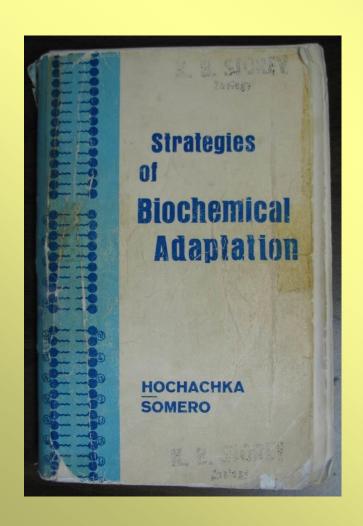

My one R-rated Story: Ken and Peter walk into a bar..... Our fantasy








The first one elevated him into the stratosphere

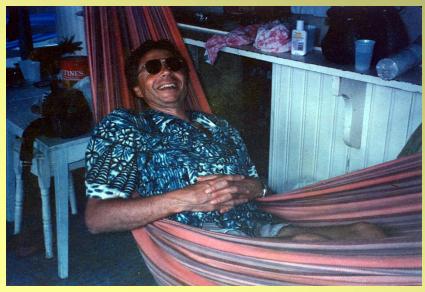


One Trial Writer:

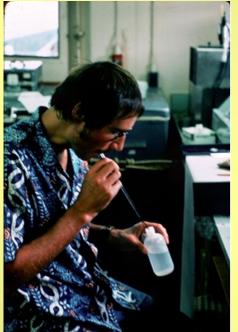
Paper + Selectric + calling out to Jeremy for facts = Lead article in science, grant propos book chapter.

~ Pristine

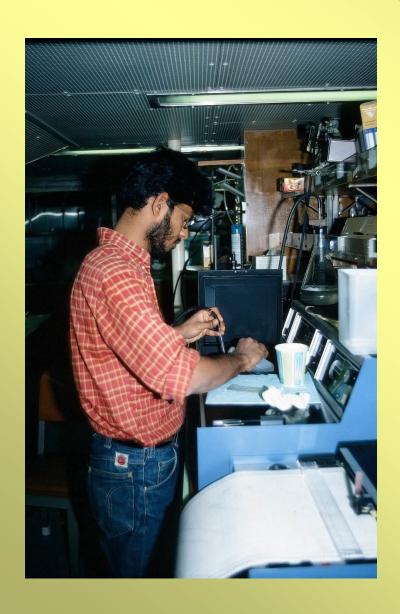
Well thumbed volume – well before the internet

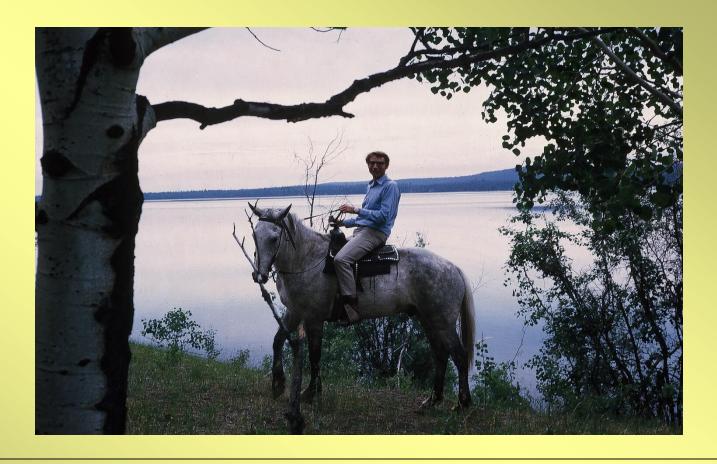


NOT in the Book:


- key flip, whistling on his way home
- phoning at 6 am [bored when alone]
- made my courses go away
- Comprehensive exam in Zoology !!
- predicted the exact results of my thesis before it started
- My actual thesis project created from a turtle paced on my desk
- Used phrase "a whirl-wind entered my lab' in describing me.... and also for EVERY subsequent student in their letter of recommendation.
- Like water off a duck's back!

In the field; In the lab

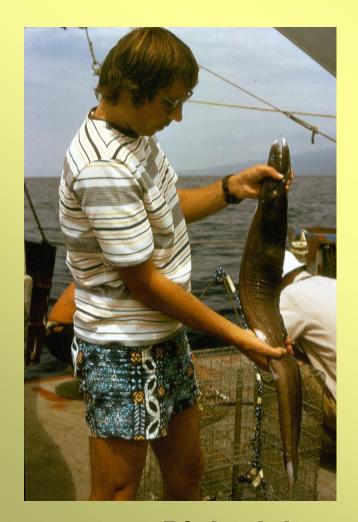


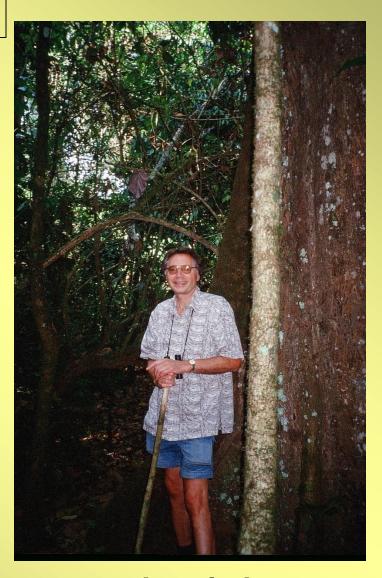


Tom & Tariq & Enzymes



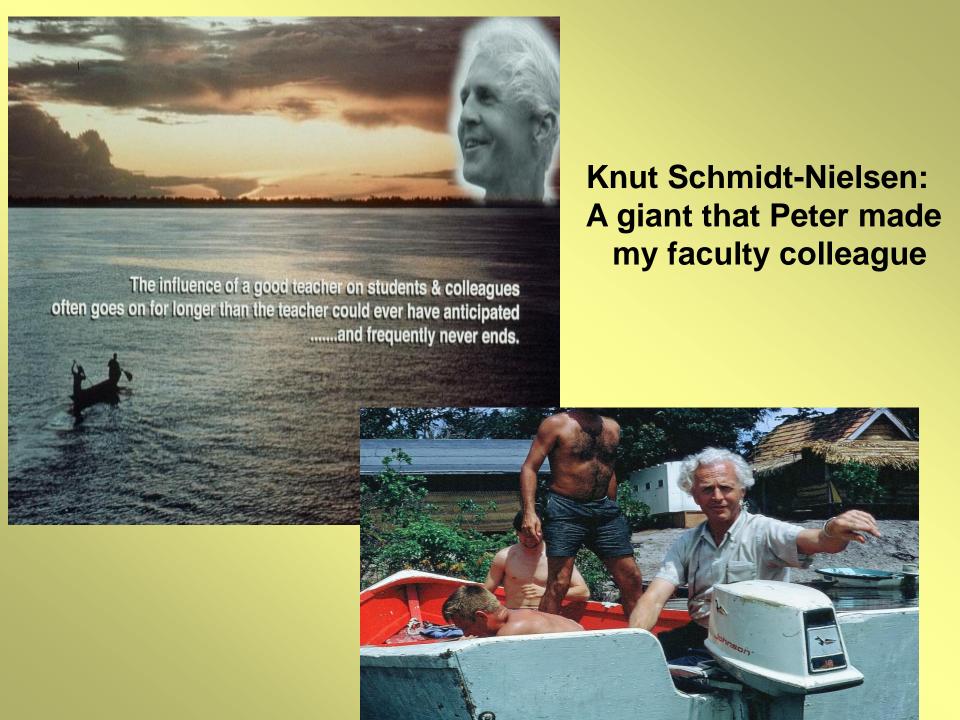
Lone rider on a Horse – the Way it Was


- * We don't know what the answer will be we just explain
- * When you do transcription factors don't just say TA-DA
- * New technology will come and change our ideas

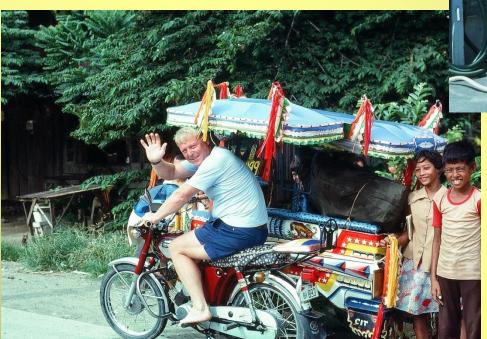


Our only meeting before I joined Peter's lab.
Helga was the gateway for my transfer to Zoology.

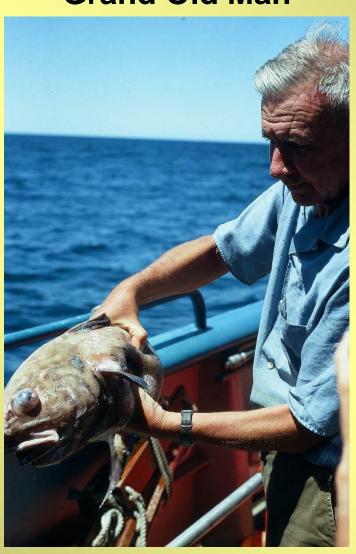
[I have still never taken a Biology Course of any kind]


The World was his oyster. He worked with Janet ON oysters!

Picked Jan out of a line-up and stole her



KNUT SCHMIDT-NIELSEN How animals work



Froze the first frog as a scientist

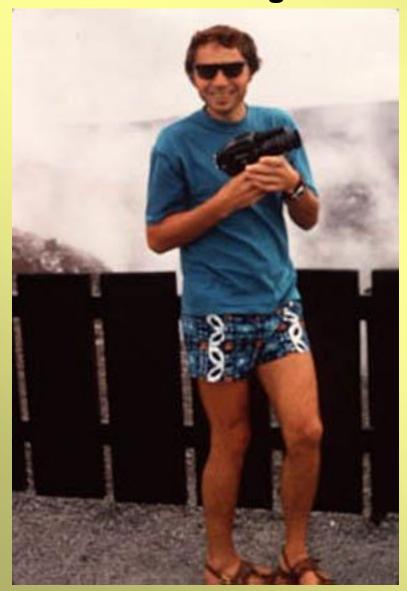
Kjell Johansen – Viking and Physiologist

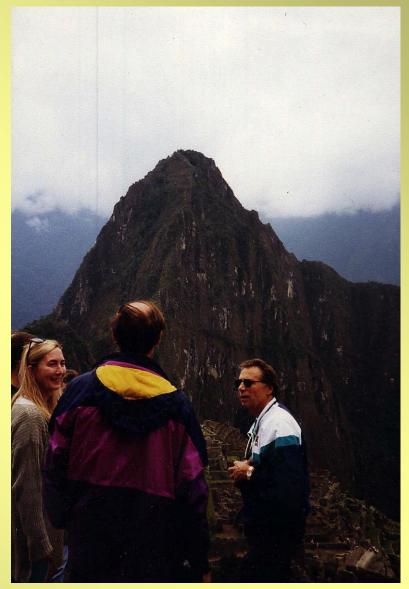
Ladd Prosser: Grand Old Man

Johnny Baldwin [OG] Fisherman & Scientist

On the ice with Warren Zapol

Fig. 4. Seal research team (1977) at Byrd Statue of McMurdo Station. Left to right standing: Jesper Qvist, M.D., Sir Graham C. ("Mont") Liggins, M.D., Ph.D., Peter Hochachka, Ph.D., Thomas R. Wonders. Seated (left to right): Paul Wankowitz, Michael T. Snider, M.D., Ph.D., Warren M. Zapol, M.D., Robert C. "Bob" Schneider, M.D.





Highlanders -- at Sea Level

Lake Louise Biochemical Adaptation Symposium 1987

Symposium participants, from left to right: J. Ballantyne, T. West, W. Parkhouse, A. Buie, K. Storey, J. Nener, H. Guderley, M. Castellini (at front), C. Moyes (at back), R. Suarez, J.-M. Weber, W. Driedzic, L. Buck, T. Petersen, E. Shoubridge, T. Mustafa, C. Doll, J. Fields, G. Pogson, T. Moon, B. Murphy, P. Hochachka, M. Guppy.

Lake Louise – the Gathering in the Snow

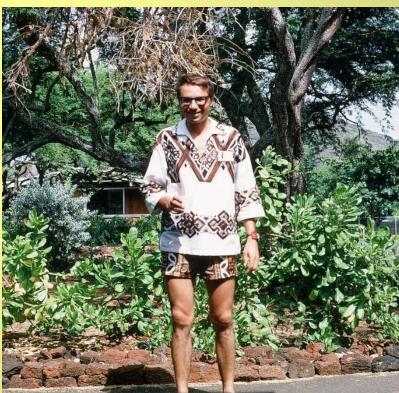
Alpha Helix: Home away from home

Alpha Helix: Amazon 1976

Peter's group in 1992 - Vera Val

Peter in Caxambu, Brazilian FASEB 1998 - VeraVal

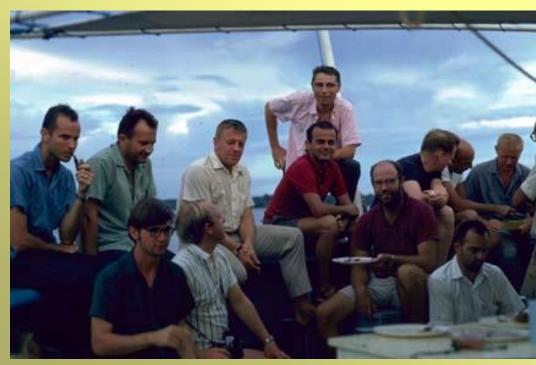
A Group that Peter made uniformly successful.


- he optimized his lab's *opportunities*
- opportunities presented.....outcomes expected
- repeated over many decades.

Did you have a SoundTrack?

Our time: Rolling Stones, The Who, Fleetwood Mac

"They say you die twice. One time when you stop breathing and a second time, a bit later on, when somebody says your name for the last time." -


Picture Gallery

Many thanks for photos supplied by: Brenda Hochachka, Tom Moon, Brian Murphy, Dave Jones, Jean-Michel Weber, Mike Guppy

Thanks to Jan Storey for photo layout.

These pictures and more are available at:

